Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.819
Filtrar
1.
Glob Health Res Policy ; 9(1): 13, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600572

RESUMEN

BACKGROUND: Conflicts, natural disasters, and complex emergencies present substantial health challenges to United Nations (UN) peacekeepers deployed in mission areas. This scoping review aims at summarizing previous research on the health of UN peacekeepers and identifies issues for further investigation. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for Scoping Reviews, we systematically searched Web of Science, PubMed, EMBASE, Scopus and China National Knowledge Infrastructure (CNKI) for English and Chinese literature published from April 1997 to November 2023. A data charting form was developed by two reviewers to extract relevant themes and provided narrative descriptions. RESULTS: We screened 1079 de-duplicated records and included 143 studies in this scoping review. There were 112 studies on the health status of UN peacekeepers, with more than half on mental health problems such as stress and anxiety. Many studies explored the health status of UN peacekeepers in African countries deployed from mainly U.S., Canada, U.K., China, Australia and Norway. There were 39 studies on the health risk factors of UN peacekeepers, including natural environmental, social environmental, psychological, behavioral lifestyle, biological factors and health service factors. There were 62 articles on the health protection of UN peacekeepers, mainly based on previous deployment experience, with a lack of theoretical guidance from global health perspectives. This scoping review found that health problems of UN peacekeepers are complicated, and whose impacts are cross-border. Social environmental factors were explored the most among health risk factors. Disease prevention measures, medical and health measures, and psychosocial measures were the main health protection for UN peacekeepers. CONCLUSIONS: This scoping review highlighted that health problems of UN peacekeepers were typical global health issues with complicated and cross-border health risk factors. Therefore, comprehensive strategies could be taken from global health perspectives, including multi-phases (before-deployment, during-deployment, and post-deployment), multi-disciplines (public health, medicine, politics, health diplomacy, and others), and multi-levels (the UN, host countries, troop-contributing countries, the UN peacekeeping team, and UN peacekeepers).


Asunto(s)
Personal Militar , Humanos , Atención a la Salud , Personal Militar/psicología , Factores de Riesgo , Naciones Unidas
2.
J Hazard Mater ; 470: 134161, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569338

RESUMEN

BACKGROUND: Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions. OBJECTIVES: To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases. METHODS: We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence. RESULTS: PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45-2.27; 1.78; 95% CI, 1.37-2.32; and 1.99; 95% CI, 1.54-2.57 for the second, third, and fourth quartiles, respectively). CONCLUSIONS: Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals. ENVIRONMENTAL IMPLICATION: PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Material Particulado , Material Particulado/análisis , China/epidemiología , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/inducido químicamente , Anciano de 80 o más Años , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Prevalencia
3.
Environ Res ; : 118959, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663669

RESUMEN

Exposure to volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, xylene, and formaldehyde from long-distance buses has been reported to adversely affect human health. This study investigates the concentrations of these five VOCs and evaluates their health risks to drivers and passengers on board. Ten trips from Taipei to Taichung were performed during the warm and cold seasons of 2021-2022. Two locations inside the bus were established to collect air samples by a 6-liter canister for drivers and passengers. Exposure concentrations of benzene, toluene, ethylbenzene, and xylene were analyzed via gas chromatography with a flame ionization detector and the formaldehyde concentration was monitored using a formaldehyde meter. Subsequently, a Monte Carlo simulation was conducted to evaluate the carcinogenic and non-carcinogenic risks of the five VOCs. Formaldehyde emerged as the highest detected compound (9.06±3.77 µg/m3), followed by toluene (median: 6.11 µg/m3; range: 3.86-14.69 µg/m3). In particular, formaldehyde was identified to have the significantly higher concentration during non-rush hours (10.67±3.21 µg/m3) than that during rush hours (7.45±3.41 µg/m3) and during the warm season (10.71±2.97 µg/m3) compared with that during the cold season (7.41±4.26 µg/m3). Regarding non-carcinogenic risks to drivers and passengers, the chronic hazard indices for these five VOCs were under 1 to indicate an acceptable risk. In terms of carcinogenic risk, the median risks of benzene and formaldehyde for drivers were 2.88 × 10-6 (95% confidence interval [CI]: 2.11×10-6 - 5.13×10-6) and 1.91×10-6 (95% CI: 4.54×10-7 - 3.44×10-6), respectively. In contrast, the median carcinogenic risks of benzene and formaldehyde for passengers were less than 1×10-6 to present an acceptable risk. This study suggests that benzene and formaldehyde may present carcinogenic risks for drivers. Moreover, the non-carcinogenic risk for drivers and passengers is deemed acceptable. We recommended that the ventilation frequency be increased to mitigate exposure to VOCs in long-distance buses.

4.
J Occup Med Toxicol ; 19(1): 12, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622636

RESUMEN

BACKGROUND: Obesity rates are rising in the armed forces of Western democratic countries, impacting military readiness and health. This highlights the need for preventive health risk assessments and countermeasures. METHODS: Using mandatory health examination data from 2018 to 2022, we analyzed the prevalence of obesity, health risks, and associated specific military risk factors (rank and unit) in 43,214 soldiers of the German Armed Forces. Statistical methods included χ2 contingencies and binary logistic regressions. RESULTS: The prevalence of obesity (BMI ≥ 30) was 18.0%. Male soldiers (OR = 3.776) and those with an officer's rank (OR = 1.244) had an increased chance for obesity. Serving in a combat unit reduced the chance of being obese (OR = .886). Considering BMI and waist circumference, 2.4% of the total sample faced extremely high cardiovascular and metabolic health risks, while 11.0% and 11.6% had very high or high health risks, respectively. CONCLUSIONS: Our data underscore the importance of targeting obesity-related health risk factors in soldiers to ensure their well-being and deployment readiness.

5.
Heliyon ; 10(7): e29189, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623211

RESUMEN

This study aimed to assess water contamination and associated health risks for populations residing in the mining areas of Kambélé and Bétaré-Oya. Key parameters, including pH, EC, TDS, TSS, and concentrations of metallic elements (Cd, Cr, Fe, Pb and Mn), were measured using established water analysis techniques. The analysis included multivariate statistical assessments, calculation of metal pollution and water quality indices, and health risk determinations, including daily intake (DI) and hazard quotient (HQ). Findings indicate a diverse pH range (5.26 < pH < 8.72), low mineralization (33.22 < EC (µS/cm) < 179.64), and elevated TSS content (22.53 < TSS (in mg/l) < 271.51). Metallic elements were observed in the descending order of Fe > Mn > Pb > Cr > Cd. Water quality assessments using the Water Quality Index (WQI) categorized sites as displaying doubtful to very poor quality, notably Woupy (WQI = 719.14) in Kambélé and Mali (WQI = 794.24) in Bétaré-Oya, with Heavy metal Pollution Index (HPI) values exceeding 100. These outcomes highlight consistent chemical degradation of surface water, posing potential risks to local populations' health and well-being. The study emphasizes the critical need for proactive environmental protection measures in mining areas, recommending the adoption of healthy mining practices and effective site reclamation strategies. Furthermore, future studies should consider exposure duration's potential impact on residents' health problems in these areas. Overall, this study contributes significantly to understanding and addressing the intricate interplay between mining activities, water quality, and public health in the Cameroon countryside.

6.
PeerJ Comput Sci ; 10: e1982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660162

RESUMEN

Maternal healthcare is a critical aspect of public health that focuses on the well-being of pregnant women before, during, and after childbirth. It encompasses a range of services aimed at ensuring the optimal health of both the mother and the developing fetus. During pregnancy and in the postpartum period, the mother's health is susceptible to several complications and risks, and timely detection of such risks can play a vital role in women's safety. This study proposes an approach to predict risks associated with maternal health. The first step of the approach involves utilizing principal component analysis (PCA) to extract significant features from the dataset. Following that, this study employs a stacked ensemble voting classifier which combines one machine learning and one deep learning model to achieve high performance. The performance of the proposed approach is compared to six machine learning algorithms and one deep learning algorithm. Two scenarios are considered for the experiments: one utilizing all features and the other using PCA features. By utilizing PCA-based features, the proposed model achieves an accuracy of 98.25%, precision of 99.17%, recall of 99.16%, and an F1 score of 99.16%. The effectiveness of the proposed model is further confirmed by comparing it to existing state of-the-art approaches.

7.
Risk Manag Healthc Policy ; 17: 955-972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645899

RESUMEN

Background: 61% of the infections around the world that have emerged to date are zoonotic. Evidence warns that the threat posed by zoonoses is on the rise, and the risk of a new pandemic is higher now than ever. Early identification of risk, populations at risk, and risk of transmission are essential steps towards a prevention, preparation and response to outbreaks. This review aims to look at the tools available for identifying and estimating risks and threats from one health perspective and finally propose a list of indicators which could assess the risk of transmission of disease at the humans, animals and the environment intersection. Methods: The databases like PubMed, google scholar, Embase and Scopus were used to extract the relevant articles. A search was carried out using a keyword. A total of 1311 articles were listed initially after the search and reviewed. Out of 1311, only 26 tools which assessed the risk of diseases mainly infectious or were relevant to risk of transmission of any infectious diseases were included in the review. Results: The tools included in this review involve risk assessment at the environmental, animal and human dimensions. The tools are used to evaluate the contamination of the environment due to chemicals or toxins or the risk of transmission of infection due to environmental factors like air contamination, to identify the animal diseases like bovine respiratory disease and foot and mouth disease and to estimate the human health risk at the community or individual levels. Conclusion: Risk assessment tools are an essential part of the prevention of pandemics. These tools are helpful in assessing the risk of transmission of infections either from human to human, between human and animals, between animals and animals and so on. Thus this review gives us an insight into the existing risk assessment tools and the need for a One Health risk assessment tools to prevent outbreaks in future. It also provides a list of factors that can be included in a one health risk assessment tool.

8.
Environ Res ; 252(Pt 2): 118934, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38653438

RESUMEN

The Changzhi Basin in Shanxi is renowned for its extensive mining activities. It's crucial to comprehend the spatial distribution and geochemical factors influencing its water quality to uphold water security and safeguard the ecosystem. However, the complexity inherent in hydrogeochemical data presents challenges for linear data analysis methods. This study utilizes a combined approach of self-organizing maps (SOM) and K-means clustering to investigate the hydrogeochemical sources of shallow groundwater in the Changzhi Basin and the associated human health risks. The results showed that the groundwater chemical characteristics were categorized into 48 neurons grouped into six clusters (C1-C6) representing different groundwater types with different contamination characteristics. C1, C3, and C5 represent uncontaminated or minimally contaminated groundwater (Ca-HCO3 type), while C2 signifies mixed-contaminated groundwater (HCO3-Ca type, Mixed Cl-Mg-Ca type, and CaSO4 type). C4 samples exhibit impacts from agricultural activities (Mixed Cl-Mg-Ca), and C6 reflects high Ca and NO3- groundwater. Anthropogenic activities, especially agriculture, have resulted in elevated NO3- levels in shallow groundwater. Notably, heightened non-carcinogenic risks linked to NO3-, Pb, F-, and Mn exposure through drinking water, particularly impacting children, warrant significant attention. This research contributes valuable insights into sustainable groundwater resource development, pollution mitigation strategies, and effective ecosystem protection within intensive mining regions like the Changzhi Basin. It serves as a vital reference for similar areas worldwide, offering guidance for groundwater management, pollution prevention, and control.

9.
Biology (Basel) ; 13(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38666872

RESUMEN

The widespread occurrence of heavy metals in aquatic environments, resulting in their bioaccumulation within aquatic organisms like fish, presents potential hazards to human health. This study investigates the concentrations of five toxic heavy metals (Pb, Hg, Zn, Cu, and Cr) and their potential health implications in two economically important fish species (Otolithoides pama and Labeo bata) from a subtropical estuarine wetland system (Feni estuary, Bangladesh). Muscle and gill samples from 36 individual fish were analyzed using energy dispersive X-ray fluorescence (EDXRF). The results revealed that the average quantities of heavy metals in both fishes' muscle followed the declining order of Zn (109.41-119.93 mg/kg) > Cu (45.52-65.43 mg/kg) > Hg (1.25-1.39 mg/kg) > Pb (0.68-1.12 mg/kg) > Cr (0.31-5.82 mg/kg). Furthermore, Zn was found to be present in the highest concentration within the gills of both species. While the levels of Cu, Zn, and Cr in the fish muscle were deemed acceptable for human consumption, the concentrations of Pb and Hg exceeded the permissible limits (>0.5 mg/kg) for human consumption. Different risk indices, including estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and carcinogenic or target risk (TR), revealed mixed and varying degrees of potential threat to human health. According to the EDI values, individuals consuming these fish may face health risks as the levels of Zn, Cu, and Cr in the muscle are either very close to or exceed the maximum tolerable daily intake (MTDI) threshold. Nevertheless, the THQ and HI values suggested that both species remained suitable for human consumption, as indicated by THQ (<1) and HI (<1) values. Carcinogenic risk values for Pb, Cr, and Zn all remained within permissible limits, with TR values falling below the range of (10-6 to 10-4), except for Zn, which exceeded it (>10-4). The correlation matrix and multivariate principal component analysis (PCA) findings revealed that Pb and Cr primarily stemmed from natural geological backgrounds, whereas Zn, Cu, and Hg were attributed to human-induced sources such as agricultural chemicals, silver nanoparticles, antimicrobial substances, and metallic plating. Given the significance of fish as a crucial and nutritious element of a balanced diet, it is essential to maintain consistent monitoring and regulation of the levels and origins of heavy metals found within it.

10.
Toxics ; 12(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38668469

RESUMEN

Epidemiological studies have suggested that inhalation exposure to particulate matter (PM) air pollution, especially fine particles (i.e., PM2.5 (PM with an aerodynamic diameter of 2.5 microns or less)), is causally associated with cardiovascular health risks. To explore the toxicological mechanisms behind the observed adverse health effects, the hemolytic activity of PM2.5 samples collected during different pollution levels in Beijing was evaluated. The results demonstrated that the hemolysis of PM2.5 ranged from 1.98% to 7.75% and demonstrated a clear dose-response relationship. The exposure toxicity index (TI) is proposed to represent the toxicity potential of PM2.5, which is calculated by the hemolysis percentage of erythrocytes (red blood cells, RBC) multiplied by the mass concentration of PM2.5. In a pollution episode, as the mass concentration increases, TI first increases and then decreases, that is, TI (low pollution levels) < TI (heavy pollution levels) < TI (medium pollution levels). In order to verify the feasibility of the hemolysis method for PM toxicity detection, the hemolytic properties of PM2.5 were compared with the plasmid scission assay (PSA). The hemolysis results had a significant positive correlation with the DNA damage percentages, indicating that the hemolysis assay is feasible for the detection of PM2.5 toxicity, thus providing more corroborating information regarding the risk to human cardiovascular health.

11.
Toxics ; 12(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668492

RESUMEN

Due to their significant environmental impact, there has been a gradual restriction of the production and utilization of legacy per- and polyfluoroalkyl substances (PFAS), leading to continuous development and adoption of novel alternatives. To effectively identify the potential environmental risks from crop consumption, the levels of 25 PFAS, including fourteen perfluoroalkyl acids (PFAAs), two precursor substances and nine novel alternatives, in agricultural soils and edible parts of various crops around a fluoride industrial park (FIP) in Changshu city, China, were measured. The concentration of ΣPFAS in the edible parts of all crops ranged from 11.64 to 299.5 ng/g, with perfluorobutanoic acid (PFBA) being the dominant compound, accounting for an average of 71% of ΣPFAS. The precursor substance, N-methylperfluoro-octanesulfonamidoacetic acid (N-MeFOSAA), was detected in all crop samples. Different types of crops showed distinguishing accumulation profiles for the PFAS. Solanaceae and leafy vegetables showed higher levels of PFAS contamination, with the highest ΣPFAS concentrations reaching 190.91 and 175.29 ng/g, respectively. The highest ΣAlternative was detected in leafy vegetables at 15.21 ng/g. The levels of human exposure to PFAS through crop consumption for various aged groups were also evaluated. The maximum exposure to PFOA for urban toddlers reached 109.8% of the standard value set by the European Food Safety Authority (EFSA). In addition, short-chained PFAAs and novel alternatives may pose potential risks to human health via crop consumption.

12.
Toxins (Basel) ; 16(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38668621

RESUMEN

Microcystins (MCs), natural hepatotoxic compounds produced by cyanobacteria, pose significant risks to water quality, ecosystem stability, and the well-being of animals, plants, and humans when present in elevated concentrations. The escalating contamination of irrigation water with MCs presents a growing threat to terrestrial plants. The customary practice of irrigating crops from local water sources, including lakes and ponds hosting cyanobacterial blooms, serves as a primary conduit for transferring these toxins. Due to their high chemical stability and low molecular weight, MCs have the potential to accumulate in various parts of plants, thereby increasing health hazards for consumers of agricultural products, which serve as the foundation of the Earth's food chain. MCs can bioaccumulate, migrate, potentially biodegrade, and pose health hazards to humans within terrestrial food systems. This study highlights that MCs from irrigation water reservoirs can bioaccumulate and come into contact with plants, transferring into the food chain. Additionally, it investigates the natural mechanisms that organisms employ for conjugation and the microbial processes involved in MC degradation. To gain a comprehensive understanding of the role of MCs in the terrestrial food chain and to elucidate the specific health risks associated with consuming crops irrigated with water contaminated with these toxins, further research is necessary.


Asunto(s)
Riego Agrícola , Microcistinas , Contaminantes Químicos del Agua , Microcistinas/análisis , Microcistinas/toxicidad , Humanos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Medición de Riesgo , Animales , Microbiología del Agua , Cianobacterias/metabolismo , Cadena Alimentaria , Contaminación de Alimentos/análisis
13.
Inhal Toxicol ; : 1-12, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669072

RESUMEN

OBJECTIVE: The present study focuses on residential areas of Delhi to identify the elevated levels of ambient PM10 and PM2.5 due to biomass burning followed by the coloring activity in the Holi festival celebrated at the end of the winter season. This study also focuses on the health risk assessment and mortality among different age groups due to the change in particulate matter levels during the Holi festival in Delhi, India. MATERIALS AND METHODS: Secondary data of particulate matters have been procured from the Central Pollution Control Board (CPCB), Delhi Pollution Control Committee (DPCC), and Indian Institute of Tropical Meteorology (IITM), Pune for the period of the pre-, during, and post-Holi period for the year 2018-2020 at four selected residential locations in Delhi, India. The health impacts of particle inhalation were quantified using the AirQ + models. RESULTS: The results indicated the levels of PM10 and PM2.5 rise about 3-4 times higher during the Holi festival than on normal days, resulting in health risks and causing an excess number of mortality and Asthma cases in Delhi. Such cases were also found to be higher in 2018, followed by 2019 and 2020 at all the selected locations in Delhi. CONCLUSIONS: The study linked the increasing particulate levels in the Holi festival with the increased health risk through short-term exposure of the population. The excess number of cases (ENCs) of mortality, all causes of mortality among adults (age > 30 years) associated with short-term exposure to particulate were also identified.

14.
Sci Total Environ ; 928: 172393, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38608901

RESUMEN

The bioaccumulation of trace metals Cd, Cr, Cu, Fe, and Zn in soft tissues of the barnacle Pollicipes pollicipes was investigated seasonally along the Atlantic coast of northwestern Morocco. Average concentrations (µg g-1 dry weight) exhibited a decreasing order: Fe (548.15 ± 132.43) > Zn (430.80 ± 181.68) > Cd (17.46 ± 9.99) > Cu (7.72 ± 1.26) > Cr (3.12 ± 0.80), with the highest levels during wet seasons. The "Metal Pollution Index" and "Individual Multimetal Bioaccumulation Index" revealed a substantial barnacle contamination in industrialized areas. Additionally, Cd and Zn concentrations surpassed permissible guideline limits. While the "Target Hazard Quotient" and "Hazard Index" unveiled no significant health risks associated with barnacle consumption for humans, Cd posed potential risks, particularly for children consuming barnacles from polluted locations. Regarding the "Maximum Safe Consumption", Cd demonstrated potential harm across all sex and age groups. These findings contribute valuable data on the safety of barnacle consumption, marking the initial assessment of such risks in Morocco. The study offers evidence of metal pollution occurrence and proposes the barnacle species as a reliable biomonitor of trace metal bioavailabilities in marine coastal areas. To our knowledge, this investigation is the first comprehensive report of metal contamination biomonitoring using barnacles from Moroccan Atlantic waters.

15.
Environ Res ; 252(Pt 2): 118946, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631470

RESUMEN

Heavy metals pollution is a notable threat to environment and human health. This study evaluated the potential ecological and health risks of heavy metals (Cu, Cr, Cd, Pb, Zn, Ni, and As) and their accumulation in a peanut-soil system based on 34 soil and peanut kernel paired samples across China. Soil As and Cd posed the greatest pollution risk with 47.1% and 17.6% of soil samples exceeding the risk screen levels, respectively, with 26.5% and 20.6% of the soil sites at relatively strong potential ecological risk level, respectively, and with the geo-accumulation levels at several soil sites in the uncontaminated to moderately contaminated categories. About 35.29% and 2.94% of soil sites were moderately and severely polluted based on Nemerow comprehensive pollution index, respectively, and a total of 32.4% of samples were at moderate ecological hazard level based on comprehensive potential ecological risk index values. The Cd, Cr, Ni, and Cu contents exceeded the standard in 11.76, 8.82, 11.76 and 5.88% of the peanut kernel samples, respectively. Soil metals posed more health risks to children than adults in the order As > Ni > Cr > Cu > Pb > Zn > Cd for non-carcinogenic health risks and Ni > Cr â‰« Cd > As > Pb for carcinogenic health risks. The soil As non-cancer risk index for children was greater than the permitted limits at 14 sites, and soil Ni and Cr posed the greatest carcinogenic risk to adults and children at many soil sites. The metals in peanut did not pose a non-carcinogenic risk according to standard. Peanut kernels had strong enrichment ability for Cd with an average bio-concentration factor (BCF) of 1.62. Soil metals contents and significant soil properties accounted for 35-74% of the variation in the BCF values of metals based on empirical prediction models.

16.
Mar Pollut Bull ; 202: 116351, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640765

RESUMEN

Coastal urbanisation has ramifications for the sustainable development of developing nations. There are often unquantified ecological and health risks associated with urbanisation. Sixteen polycyclic aromatic hydrocarbons (PAHs) were analysed in surface sediment from three peri-urban coastal lagoons in southern Ghana. We found significant spatial variations of sediment PAHs. These variations were attributed to physiography of the lagoons and diverse anthropogenic activities surrounding them. Total PAHs ranged from 20.81 to 24,801.38 µg/kg (dry weight), underscoring a low to very high pollution level. Diagnostic ratios revealed both pyrogenic and petrogenic origins. Over 50 % of individual PAHs were of moderate ecological risk to benthic organisms, and cancer risk to humans was above the World Health Organisation's recommended safety limit (1 × 10-6). These ecological and health risks should be wake-up call for a more integrated urban planning approach to coastal urbanisation as coastal communities largely depend on natural ecosystems for food and livelihood opportunities.

17.
Food Chem Toxicol ; : 114677, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641042

RESUMEN

Consumption of rice-based foods provides essential nutrients required for infants and toddlers' growth. However, they could contain toxic and excess essential elements that may affect human health. The study aims to determine the composition of rice-based baby foods in the USA and outside and conduct a multiple-life stages probabilistic exposure and risk assessment of toxic and essential elements in children. Elemental concentrations were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in thirty-three rice-based baby foods. This includes 2 infant formulas, 11 rice baby cereals, and 20 rice snacks produced primarily in the United States, China, and other countries. A probabilistic risk assessment was conducted to assess risks of adverse health effects. Results showed that infant formula had higher median concentrations of selenium (Se), copper (Cu), zinc (Zn), sodium (Na), magnesium (Mg), calcium (Ca), and potassium (K) compared to rice baby cereal and rice snacks. On the contrary, rice snacks had the highest median concentration of Arsenic (As) (127 µg/kg) while rice baby cereals showed the highest median concentration of Cd (7 µg/kg). A higher lifetime estimated daily intake was observed for samples manufactured in the USA compared to those from China and other countries. Hazard quotient (HQ<1) values were suggestive of minimal adverse health effects. However, lifetime carcinogenic risk analysis based on total As indicated an unacceptable cancer risk (> 1E-04). These findings show a need for ongoing monitoring of rice-based foods consumed by infants and toddlers as supplementary and substitutes for breast milk or weaning food options. This can be useful in risk reduction and mitigation of early life exposure to improve health outcomes.

18.
J Contam Hydrol ; 264: 104344, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38643620

RESUMEN

Groundwater is crucial for agriculture and domestic consumption. This research investigated the hydrogeochemical properties and contaminant sources of groundwater within the mountainous terrain of northern Chongqing, with the objective of evaluating its appropriateness for irrigation and potable use. The hydrochemical type of the groundwater was HCO3 - Ca, dominated by silicate and calcite dissolutions. High NO3- (29.03% exceeds 10 mg/L) were attributed to the overuse of agricultural fertilizers. A comprehensive evaluation was conducted to determine the groundwater suitability for agricultural and potable uses. The results showed that groundwater in the southwestern region, particularly within the Yangtze River mainstem watershed, exhibited less suitability for irrigation owing to its lower mineralization, in contrast to the northeastern region near the Daning River watershed. But this trend is reversed for drinking purposes. Overall, the groundwater was appropriate for both drinking (93.55% were classified as excellent) and irrigation (70.98% were classified as low restriction) purposes in the study area. Deterministic and probabilistic noncarcinogenic health risk analyses centered on nitrate exposure revealed that infants (with 13.79% of samples >1) were at greater risk than children (8.58%), adult males (6.98%), and adult females (5.24%). This underscores the urgency to reduce nitrogen fertilizer usage and improve water management in the region. This research will provide guidance for the sustainable groundwater management in mountainous regions.

19.
Chemosphere ; : 142078, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643844

RESUMEN

Titanium dioxide (TiO2) is an important industrial chemical, and studies suggest its major production route - the chloride process could lead to the generation of unintentional dl-POPs. However, no relevant studies assessed the occurrence of dl-POPs associated with TiO2 production in the industrial zones, which is mostly due to the ultra-trace level distribution of these compounds in environmental compartments. The present study explored the novel possibility of utilising foraging animal-origin foods as sensitive indicators for addressing this challenge and generated a globally beneficial dataset by assessing the background levels of dl-POPs in the vicinity of a TiO2 production house in Southern India. Systematic sampling of foraging cow's milk and free-ranging hen's eggs was carried out from the study site, and the dl-POPs assessments were conducted utilising an in-house developed cost-effective GC-MS/MS-based analytical methodology. The median dl-POPs levels in milk and egg samples were about 3 times higher than the control samples collected from farm-fed animals and retail markets. The contaminant loads in the foraging animal-origin food samples were further traced to their presence in environmental compartments of soil and sediment and admissible degree of correlations were observed in congener fingerprints. Elevated health risks were inferred for the population in the industrial zones with weekly intakes weighing about 0.15 to 17 times the European Food Safety Authority-assigned levels. The consumption of foraging cow's milk was observed to have a higher contribution towards the hazard indices and cancer risk estimates and were significantly higher (p < 0.05) for children. The study also presents a critical validation of the GC-MS/MS-based method for the purpose of regulatory monitoring of dl-POPs, which could be of practical significance in economies in transition.

20.
Environ Pollut ; : 123946, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643932

RESUMEN

In recent years, the malodorous gases generated by sewage treatment plants have gradually received widespread attention due to their sensory stimulation and health hazards. The emission concentration, sensory evaluation and health risk assessment of volatile sulfur compounds (VSCs) were all explored in two municipal wastewater treatment plants (WWTPs) with oxidation ditch and anaerobic/oxic treatment process, respectively. The VSCs concentration showed the highest amount in the primary treatment unit in both the two WWTPs (73.3% in Plant A and 93.0% in Plant B), while the H2S took the main role in the composition of VSCs. However, H2S took a larger percentage in Plant A (84.5% ∼ 87.0%) rather than Plant B (61.2% ∼ 83.5%), which may be due to the different operating conditions and sludge properties in different treatment process. Besides, H2S also gained the first rank in the sensory evaluation and health risk assessment, which may cause considerable sensory irritation and health risk to workers and surrounding residents. Furthermore, the influencing factor analyses of VSCs emission showed that the temperature of water and air, ORP of sludge made the greatest effect on VSCs release. This study provides theoretical and data support for the research of VSCs emission control in WWTPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...